THE JOURNAL OF ANTIBIOTICS

A NEW INDOLE *N*-GLYCOSIDE ANTIBIOTIC SF-2140 FROM AN *ACTINOMADURA*

I. TAXONOMY AND FERMENTATION OF PRODUCING MICROORGANISM

Hiroyoshi Tohyama, Shinji Miyadoh, Mitsugu Ito, Takashi Shomura, Tatsuo Ito and Tetsuo Ishikawa

> Pharmaceutical Research Laboratories, Meiji Seika Kaisha Ltd., Morooka-cho, Kohoku-ku, Yokohama, 222 Japan

МІСНІО КОЈІМА

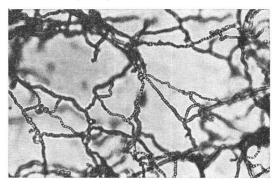
Pharmaceutical Development Laboratories, Meiji Seika Kaisha Ltd., Horikawa-cho, Kawasaki, 210 Japan

(Received for publication June 22, 1984)

A new indole *N*-glycoside antibiotic SF-2140 which shows antiviral and weak antibacterial activity has been obtained from the cultured broth of an actinomycete strain. Strain SF-2140, designated *Actinomadura albolutea* sp. nov., was isolated from a soil sample collected in Hyogo Prefecture, Japan.

In the course of our screening program for new antibiotics from so-called rare actinomycetes, we have isolated a strain of *Actinomadura* which produces methyl (3-cyanomethyl-4-methoxyindol-1-yl-4-deoxy- α -D-*lyxo*-hexopyranosid)uronate¹⁾. Taxonomic studies indicate the producing microorganism belongs to the genus *Actinomadura* Lechevalier and Lechevalier, 1970²⁾.

In this paper, taxonomy and fermentation of the producing microorganism are described.


Taxonomy

The methods for characterization of strain SF-2140 were based on those described by SHIRLING and GOTTLIEB³⁾. Additional media recommended by WAKSMAN⁴⁾ were also used. Diaminopimelic acid and sugars in whole cell hydrolysates were determined by the methods of BECKER *et al.*⁵⁾ and LECHEVALIER⁶⁾, respectively. Phospholipids and menaquinones were analyzed by the procedure of LECHEVALIER *et al.*⁷⁾ and COLLINS *et al.*⁸⁾, respectively.

Morphology

Aerial mycelia of strain SF-2140 were well developed, long, straight to wavy and monopodially branched on yeast extract - malt extract agar (ISP medium 2), oatmeal agar (ISP medium 3), inorganic salts - starch agar (ISP medium 4) and glycerol - asparagine agar (ISP medium 5). They then divided into many spores (Fig. 1), giving an appearance of total sporulation which is observed commonly in *Nocardiopsis* strains. Spores were non-motile, $0.4 \sim 0.6 \times 0.6 \sim 1.3 \mu m$ in size, oval to cylindrical in shape and with

Fig. 1. Total sporulation of aerial mycelia of strain SF-2140. (×600)

(×10,000)

Fig. 2. Scanning electron micrograph of strain SF-2140.

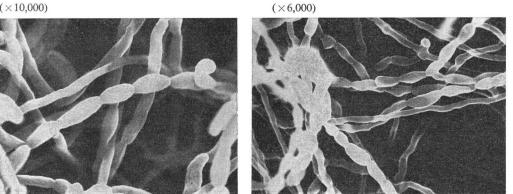


Table 1. Cultural characteristics of strain SF-2140.

Medium		Strain SF-2140					
Sucrose - nitrate agar	GR:	Good	AM:	Poor, pearl pink (3ca)			
	RC:	Golden brown (3pg)	SP:	None			
Glucose - asparagine agar	GR:	Good	AM:	Poor, pearl pink (3ca)			
	RC:	Golden brown (3pg)	SP:	None			
Glycerol - asparagine agar	GR:	Good	AM:	Good, light tan (3ge)			
(ISP No. 5)	RC:	Yellow maple (3le)	SP:	None			
Inorganic salts - starch agar	GR:	Good	AM:	Good, pearl pink (3ca)			
(ISP No. 4)	RC:	Oak brown (4pi)	SP:	None			
Oatmeal agar	GR:	Good	AM:	Good, light melon yellow (3ea)			
(ISP No. 3)	RC:	Topaz (3ne)	SP:	None			
Yeast extract - malt extract agar	GR:	Good	AM:	Good, pussywillow gray (5dc)			
(ISP No. 2)	RC:	Oak brown (4pi)	SP:	None			
Tyrosine agar	GR:	Good	AM:	Good, melon yellow (3ga)			
(ISP No. 7)	RC:	Chocolate brown (4pn)	SP:	None			
Nutrient agar	GR:	Moderate	AM:	Poor, white (a)			
	RC:	Amber (3nc)	SP:	None			
Ca-malate agar	GR:	Good	AM:	Good, pale peach pink (5cb)			
	RC:	Topaz (3ne)	SP:	None			
Bennett agar	GR:	Good	AM:	Good, pearl pink (3ca)			
	RC:	Oak brown (4pi)	SP:	None			

GR: Growth, RC: reverse color, AM: aerial mycelium, SP: soluble pigment.

(): Color number designated from Color Harmony Manual, 4th edition, Container Corporation of America, Chicago, Illinois, 1958.

smooth surfaces (Fig. 2). Fragmentation of substrate mycelia of strain SF-2140 was not observed on agar media or in liquid culture media. Sporangia were not formed.

Cultural Characteristics

Cultural characteristics of strain SF-2140 are shown in Table 1.

Physiological Characteristics

Physiological characteristics of strain SF-2140 are shown in Table 2 and the pattern of carbohydrate utilization in Table 3.

Table 2. Physiological characteristics of strain SF-2140.

Characteristics	Strain SF-2140
Temperature for growth	20~45°C
Liquefaction of gelatin	Positive
Hydrolysis of starch	Positive
Milk peptonization	Negative
Milk coagulation	Positive
Melanoid pigment formation	Negative
Nitrate reduction	Negative
Tolerance of NaCl	Up to 5%

Table 3. Carbohydrate utilization of strain SF-2140.

Positive utilization	D-Glucose, D-fructose,		
	D-xylose, D-mannitol,		
	L-rhamnose, sucrose,		
	L-arabinose		
Negative utilization	<i>i</i> -Inositol, raffinose		

Table 4.	Comparison	of	strain	SF-2140	with	related	genera.
----------	------------	----	--------	---------	------	---------	---------

	Actinomadura	Strain SF-2140	Nocardiopsis
Fragmentation of substrate mycelium	_	_	+
Total sporulation of aerial mycelium	_	+	+
Madurose	+	+	_
Phospholipid-type ¹⁴⁾	PI/PIV	PIV	PIII
Major menaquinones	MK-9	MK-9	MK-10

Chemical Analysis

Whole cell hydrolysates contained *meso*-diaminopimelic acid and a small amount of madurose, but no arabinose or xylose. This indicates that the strain is an actinomycete of cell wall type III B according to the classification of LECHEVALIER *et al.*⁹ The strain had phospholipids of type PIV and contained MK-9 (the main component is H_4) as its major menaquinones.

Comparison with Related Organisms

The characteristics mentioned above place strain SF-2140 between the genus *Actinomadura* and *Nocardiopsis* Mayer, 1976¹⁰. Strain SF-2140 morphologically resembles *Nocardiopsis* rather than *Actinomadura* because total sporulation of aerial mycelia was observed. But the presence of madurose in whole cell hydrolysates and other chemical characteristics indicate the strain is clearly differentiated from the genus *Nocardiopsis* (Table 4). Therefore, strain SF-2140 should be identified as a member of the genus *Actinomadura*.

Three species of *Actinomadura*, *A. kijaniata*¹¹⁾, *A. coeruleofusca*¹²⁾ and *A. flava*¹³⁾, were previously reported to form long spore chains (total sporulation) like strain SF-2140. However, strain SF-2140 is obviously differentiated from the three: *A. kijaniata* has a type PI phospholipid pattern and dark green reverse side color, whereas strain SF-2140 has a type PIV phospholipid pattern and yellowish brown to dark brown reverse side color; *A. coeruleofusca* has blue to bluish gray aerial mycelia, while those of strain SF-2140 are white to whitish yellow; *A. flava* is the strain most similar to strain SF-2140. A direct comparison of strain SF-2140 with *A. flava* ATCC 29533 was carried out: *A. flava* has light amber to light bamboo reverse side color, rarely forms white aerial mycelia and produces madumycin, while strain SF-2140 is yellowish brown to dark brown in reverse side color, forms whitish yellow aerial mycelia abundantly and produces antibiotic SF-2140.

Therefore, strain SF-2140 is a new species of *Actinomadura*, for which we propose the name *Actinomadura albolutea* (albo L. adj. white, lutea L. adj. yellow, referring to the color of aerial mycelia). The type strain of *Actinomadura albolutea* is strain SF-2140.

Strain SF-2140 has been deposited in the Fermentation Research Institute, Agency of Industrial Science and Technology, Japan, with accession number of FERM-BP 386.

Fermentation

The production of antibiotic SF-2140 was carried out as follows: Several loops of spores of strain SF-2140 were inoculated into 20 ml of a seed culture medium consisting of soluble starch 1.0%, glucose 1.0%, Polypeptone (Daigo-eiyo Chemical Co., Osaka) 0.5%, meat extract 0.2%, yeast extract 0.3%, soybean meal 0.2% and CaCO₃ 0.1% (pH 7.0) in a 100-ml Erlenmeyer flask. The inoculated flask was shaken on a rotary shaker (220 rpm) at 28°C for 3 days. Four milliliters of the first seed were inoculated into 80 ml of the same medium in a 500-ml Erlenmeyer flask. The inoculated flask was shaken at 28°C

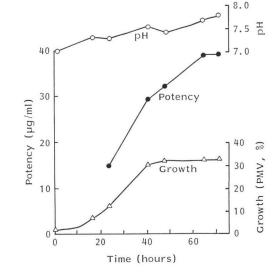


Fig. 3. Time course of fermentation of strain SF-2140 illustrating pH, growth and antibiotic production.

for 2 days. Fifty milliliters of the second seed were re-inoculated into 1 liter of the same medium in a 5-liter Erlenmeyer flask. After shaking at 28°C for 2 days, 1 liter of the third seed was transferred to a 50-liter fermentor containing 35 liters of the following production medium: maltose syrup 2.0%, soybean oil 0.15%, soybean meal 0.5%, distiller's solubles (Sun-grain Co., Aichi) 0.125%, Pharmamedia (Traders Oil Mill Co., Texas) 0.25%, Polypeptone 0.4%, K₂HPO₄ 0.1% and FeSO₄·7H₂O 0.0005% in a tap water, and adjusted to pH 7.0 before sterilization. Fermentation was maintained at 28°C for 65 hours with an air-flow rate of 35 liters per minute and an agitation at 270 rpm. The progress of fermentation was monitored by determination of the growth measured as packed mycelial volume (PMV, %), pH and potency of substance SF-2140 by a microbial paper-disc agar diffusion assay using *Comamonas terrigena* ATCC 8461 as the test organism (Fig. 3). The production of antibiotic SF-2140 was maximum at 65 hours after inoculation, reaching 40 μ g/ml.

References

- ITO, T.; K. OHBA, M. KOYAMA, M. SEZAKI, H. TOHYAMA, T. SHOMURA, H. FUKUYASU, Y. KAZUNO, T. NIWA, M. KOJIMA & T. NIIDA: A new antiviral antibiotic SF-2140 produced by *Actinomadura*. J. Antibiotics 37: 931~934, 1984
- LECHEVALIER, H. A. & M. P. LECHEVALIER: A critical evaluation of the genera of aerobic actinomycetes. In The Actinomycetes. pp. 393~405. Gustav Fischer Verlag, Jena, 1970
- SHIRLING, E. B. & D. GOTTLIEB: Methods for characterization of *Streptomyces* species. Int. J. Syst. Bacteriol. 16: 313~340, 1966
- 4) WAKSMAN, S. A.: The Actinomycetes. Vol. II. The Williams & Wilkins Company, Baltimore, 1961
- BECKER, B.; M. P. LECHEVALIER, R. E. GORDON & H. A. LECHEVALIER: Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole cell hydrolysates. Appl. Microbiol. 12: 421~423, 1964
- LECHEVALIER, M. P.: Identification of aerobic actinomycetes of clinical importance. J. Lab. Clin. Med. 71: 934~944, 1968
- LECHEVALIER, M. P.; C. DEBIEVRE & H. A. LECHEVALIER: Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem. Syst. Ecol. 5: 249~260, 1977

- COLLINS, M. D.; T. PIROUS & M. GOODFELLOW: Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100: 221 ~ 230, 1977
- LECHEVALIER, M. P. & H. A. LECHEVALIER: Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435~443, 1970
- MAYER, J.: Nocardiopsis, a new genus of the order Actinomycetales. Int. J. Syst. Bacteriol. 26: 487~ 493, 1976
- 11) HORAN, A. C. & B. C. BRODSKY: A novel antibiotic-producing *Actinomadura*, *Actinomadura kijaniata* sp. nov. Int. J. Syst. Bacteriol. 32: 195~200, 1982
- PREOBRAZHENSKAYA, T. P. & M. A. SVESHNIKOVA: New species of the genus Actinomadura. Mikrobiologiya 43: 864~868, 1974
- 13) GAUSE, G. F.; T. S. MAKSIMOVA, O. L. OLKHOVATOVA, M. A. SVESHNIKOVA, G. V. KOCHETKOVA & G. B. ILCHENKO: Production of madumycin, an antibacterial antibiotic, by *Actinomadura flava* sp. nov. Antibiotiki 9: 771~775, 1974
- 14) LECHEVALIER, M. P.; A. E. STERN & H. A. LECHEVALIER: Phospholipids in the taxonomy of actinomycetes. *In* Actinomycetes. Gustav Fischer Verlag, Stuttgart, 1981